LC 2015: Paper 1

Question 5 (25 marks)

Question 5 (a)
$x=\sqrt{x+6} \leftarrow$ Square both sides.
$x^{2}=x+6$
$x^{2}-x-6=0 \leftarrow$ Factorise the quadratic.
$(x+2)(x-3)=0$
$x=\not-2,3$
$\therefore x=3$

Check each solution:
$x=-2$: LHS : $x=-2$

$$
\text { RHS : } \sqrt{x+6}=\sqrt{-2+6}=\sqrt{4}=2
$$

Therefore, $x=-2$ is not a solution.

$$
\begin{aligned}
x=3: & \text { LHS : } x=3 \\
& \text { RHS : } \sqrt{x+6}=\sqrt{3+6}=\sqrt{9}=3
\end{aligned}
$$

Therefore, $x=3$ is a solution.

Marking Scheme Notes

Question 5 (a) [Scale 10C (0, 4, 8, 10)]
4: • Indication of squaring
8: - Correct roots
Note: must indicate required root

Question 5 (b)

$y=x-\sqrt{x+6}=x-(x+6)^{\frac{1}{2}}$
$\frac{d y}{d x}=1-\frac{1}{2}(x+6)^{-\frac{1}{2}}=1-\frac{1}{2 \sqrt{x+6}}$

Formulae and Tables Book

Calculus: Derivatives [page 25]
$y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}$
$y=[f(x)]^{n} \Rightarrow \frac{d y}{d x}=n[f(x)]^{n-1} \times f^{\prime}(x)$

Marking Scheme Notes

Question 5 (b) [Scale 5B (0, 2, 5)]
2: - Any correct differentiation

- Indication of $(x+6)^{\frac{3}{2}}$

Question 5 (c)

$\frac{d y}{d x}=0 \Rightarrow=1-\frac{1}{2 \sqrt{x+6}}=0$
$1=\frac{1}{2 \sqrt{x+6}}$
$2 \sqrt{x+6}=1 \leftarrow$ Square both sides.
$4(x+6)=1$
$4 x+24=1$
$4 x=-23$
$x=-\frac{23}{4}$
$x=-\frac{23}{4}: y=x-\sqrt{x+6}=-\frac{23}{4}-\sqrt{-\frac{23}{4}+6}=-\frac{23}{4}-\sqrt{\frac{1}{4}}=-\frac{23}{4}-\frac{1}{2}=-\frac{25}{4}$
Turning point $\left(-\frac{23}{4},-\frac{25}{4}\right)$

Marking Scheme Notes

Question 5 (c) [Scale 10C (0, 4, 8, 10)]
4: - Differentiation equals 0
8: - Finds x value
Note 1: A linear equation from $f^{\prime}(x)$ gets low partial at most
Note 2: Must put $f^{\prime}(x)=0$ in (c) to get any marks
Note 3 : $f^{\prime}(x)$ only and $f^{\prime \prime}(x)$ only: no credit

